
SPECpy Documentation
Release 1

Lakhsmipriya Sukumar and Brian Toby

October 24, 2012

CONTENTS

1 Module spec: SPEC-like emulation 3

2 Module spec: Global variables 5

3 Module spec: Function Descriptions 7

4 Module macros: SPEC-like emulation 15

5 Module macros: All Functions 17

Index 25

i

ii

SPECpy Documentation, Release 1

Note that this package requires the Python NumPy and PyEpics packages be installed order to control an instrument.
However, if PyEpics is not installed, all routines documented here can still be run. However, in this case EPICS
interactions will be simulated and print statements will report what the Python code is attempting to do. Likewise, if
PyEpics is installed, but :func:‘EnableEPICS‘ is not called (or is called with a value of False), again no communica-
tion with EPICS is attempted. This allows scripts to be developed and tested without access to the instrument.

CONTENTS 1

SPECpy Documentation, Release 1

2 CONTENTS

CHAPTER

ONE

MODULE SPEC: SPEC-LIKE
EMULATION

The Python functions listed below are designed to emulate similar commands/macros in SPEC.

Motor interface routines

Description Relative Absolute
move motor mvr() mv()
move motor with wait umvr() umv()
where is this motor? wm()
where are all motors? wa()

Scaler routines

description command
start and readout scaler after completion ct()
start scaler and return count_em()
wait for scaler to complete wait_count()
read scaler get_counts()

Other routines in module spec

3

SPECpy Documentation, Release 1

other routines Description
EnableEPICS() Turns simulation mode on or off
ShowEnabled() Show if use of use of EPICS is available
DefineMtr() Define a motor to be accessed
GetMtrInfo() Retrieves all motor info from a key
DefineScaler() Define a scaler to be accessed
GetScalerInfo() Retrieves all scaler info from an index
ListMtrs() Returns a list of motor symbols
Sym2MtrVal() Retrieves the motor entry key from a symbol
ExplainMtr() Retrieves the motor description from a key or symbol
ReadMtr() Returns the motor position from a key
PositionMtr() Moves a motor
GetScalerLastCount() Returns the last set of counts that have been read for a scaler
GetScalerLastTime() Returns the counting time for the last use of a scaler
GetScalerLabels() Returns the labels that have been retrieved for a scaler
SetMon() Set the monitor channel for the scaler
GetMon() Return the monitor channel for the scaler
SetDet() Set the main detector channel for the scaler
GetDet() Return the main detector channel for the scaler
setCOUNT() Sets the default counting time
setRETRIES() Sets the maximum number of EPICS retries
setDEBUG() Sets debugging mode on (printing lots of stuff) or off

4 Chapter 1. Module spec: SPEC-like emulation

CHAPTER

TWO

MODULE SPEC: GLOBAL VARIABLES

COUNT defines the default counting time (sec) when ct is called without an argument. Defaults to 1
sec. Use setCOUNT() to set this when using from spec import *, as setting the variable
directly has problems:

This will sort-of work:

>>> from spec import *
>>> import spec
>>> spec.COUNT=3

however, COUNT in the local namespace will still have the old value.

but this will not work:

>>> from spec import *
>>> COUNT=3

This fails because the local copy of COUNT gets replaced, but the copy of COUNT
actually in the spec module is left unchanged.

S S is a list that contains the last count values measured during the last call to ct() or get_counts().

MAX_RETRIES Number of times to retry an EPICS operation (that are nominally expected to work on
the first try) before generating an exception. Use setRETRIES() to set this or care when changing
this (see comment on COUNT, above.)

DEBUG When set to True lots of print statements to be executed. Use for code development/testing. Use
setDEBUG() to set this or care when changing this (see comment on COUNT, above.)

5

SPECpy Documentation, Release 1

6 Chapter 2. Module spec: Global variables

CHAPTER

THREE

MODULE SPEC: FUNCTION
DESCRIPTIONS

The functions available in this module are listed below.

spec.DefineMtr(symbol, prefix, comment=’‘)
Define a motor for use in this module. Adds a motor to the motor table.

Parameters

• symbol (string) – a symbolic name for the motor. A global variable is defined in this mod-
ule’s name space with this name, This must be unique; exception specException is raised if
a name is reused.

• prefix (string) – the prefix for the motor PV (ioc:mnnn). Omit the motor record field name
(.VAL, etc.).

• comment (string) – a human-readable text field that describes the motor. Suggestion: in-
clude units and define the motion direction.

Returns key of entry created in motor table (str).

If you will use the ‘‘ from <module> import * ‘‘ python command to import these routines into the current
module’s name space, it is necessary to repeat this command after DefineScaler() to import the globals
defined within in the top namespace:

Example (recommended for interactive use):

>>> from spec import *
>>> EnableEPICS()
>>> DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> from spec import *
>>> mv(mtrXX1, 0.123)

Note that if the second from ... import * command is not used, the variables mtrXX1 and mtrXX2
cannot be accessed and the final command will fail.

Alternate example (this is a cleaner way to code scripts, since namespaces are not mixed):

>>> import spec
>>> spec.EnableEPICS()
>>> spec.DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> spec.DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> spec.mv(spec.mtrXX1, 0.123)

It is also possible to mix the two styles:

7

SPECpy Documentation, Release 1

>>> import spec
>>> spec.EnableEPICS()
>>> spec.DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> spec.DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> from spec import *
>>> mv(mtrXX1, 0.123)

spec.DefineScaler(prefix, channels=8, index=0)
Defines a scaler to be used for this module

Parameters

• prefix (string) – the prefix for the scaler PV (ioc:mnnn). Omit the scaler record field name
(.CNT, etc.)

• channels (int) – the number of channels associated with the scaler. Defaults to 8.

• index (int) – an index for the scaler, if more than one will be defined. The default (0) is used
to define the scaler that will be used when ct() is called with one or no arguments.

Example (recommended for interactive use):

>>> from spec import *
>>> EnableEPICS()
>>> DefineScaler(’id1:scaler1’,16)
>>> DefineScaler(’id1:scaler2’,index=1)
>>> ct()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Alternate example (preferred for use in code):

>>> import spec as s
>>> s.EnableEPICS()
>>> s.DefineScaler(’ioc1:3820:scaler1’,16)
>>> s.DefineScaler(’ioc1:3820:scaler2’,index=1)
>>> s.ct()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
>>> s.ct(index=1)
[1, 2, 3, 4, 5, 6, 7, 8]

spec.EnableEPICS(state=True)
Call to enable communication with EPICS.

If not called then the module will function in simulation mode only. If the PyEpics module cannot be loaded,
then simulation will also be used.

Parameters state (bool) – if False is specified, then simulation mode is used (default value, True)

spec.ExplainMtr(mtr)
Show the description for a motor, as defined in DefineMtr()

Parameters mtr (various) – symbolic name for the motor, can take two forms: a motor key or a
motor symbol.

Returns motor description (str) or ‘?’ if not defined

spec.GetDet(index=0)
Return the main detector channel for the scaler or none if not defined. (See SetDet()) This is used for
ASCAN, etc.

8 Chapter 3. Module spec: Function Descriptions

SPECpy Documentation, Release 1

Parameters index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns the channel number of the Detector

spec.GetMon(index=0)
Return the monitor channel for the scaler or none if not defined. (See SetMon()) This is used for counting on
the Monitor.

Parameters index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns the channel number of the Monitor

spec.GetMtrInfo(mtr)
Return a dictionary with motor information.

Parameters mtr (str) – a key corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns dictionary with motor information

spec.GetScalerInfo(index=0)
returns information about a scaler based on the index

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a dictionary with information on the scaler

spec.GetScalerLabels(index=0)
returns the labels that have been retrieved for a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a list of labels

spec.GetScalerLastCount(index=0)
returns the last set of counts that have been read for a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a list of the last counts

spec.GetScalerLastTime(index=0)
returns the count time for the last read from a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a single float with the last elapsed time for that scaler (initialized at 0) of the last counts

spec.ListMtrs()
Returns a list of the variables defined as motor symbols.

Returns a python list of defined motor symbols (list of str values).

spec.PositionMtr(mtr, pos, wait=True)
Move a motor

Position a motor associated with mtr to position pos, wait for the move to complete if wait is True, or else return
immediately. The function attempts to verify the move command has been acted upon.

Parameters

9

SPECpy Documentation, Release 1

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits an
exception occurs (todo: are hard limits checked?).

• wait (bool) – a flag that specifies if the move should be completed before the function
returns. If False, the function returns immediately.

spec.ReadMtr(mtr)
Return the motor position associated with the passed motor value.

Parameters mtr (int) – a key corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns motor position (float).

spec.SetDet(Detector=None, index=0)
Set the main detector channel for the scaler. The default is to restore this to the initial setting, where this is
undefined. This is used for ASCAN, etc.

Parameters

• Monitor (int) – channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 0 through one less than the number of channels.

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

spec.SetMon(Monitor=None, index=0)
Set the monitor channel for the scaler. The default is to restore this to the initial setting, where this is undefined.
This is needed for counting on the Monitor.

Parameters

• Monitor (int) – channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 0 through one less than the number of channels.

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

spec.ShowEnabled()
Show if use of EPICS is allowed or disabled, see EnableEPICS().

Returns True if PyEpics has been loaded, False otherwise

spec.Sym2MtrVal(mtrsym)
Converts a motor symbol (as a string) to the motor value (key) as assigned in DefineMtr()

Parameters mtrsym (str) – a motor symbol as supplied in DefineMtr(). If the value does not
correspond to a motor entry, an exception is raised.

Returns motor value (str).

spec.count_em(count=None, index=0)
Cause scaler to start counting for specified period, but return immediately. On the first use, this will take the
scaler out of autocount mode and put it into one-shot mode (this is because if one does not read the scaler shortly
after a count when in autocount mode, the scaler returns to autocount and the values are lost.) If put in one-shot
mode, then autocount will be restored when the python interpreter is exited.

Counting is on time if count is 0 or positive; Counting is on monitor if count < 0

Parameters

• count-time (float) – time (sec) to count, if omitted COUNT is used

10 Chapter 3. Module spec: Function Descriptions

SPECpy Documentation, Release 1

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns None

Example:

>>> count_em()
>>> # do other commands
>>> wait_count()
>>> get_counts()

spec.ct(count=None, index=0, label=False)
Cause scaler to count for specified period or to a specified number of counts on a prespecified channel (see
SetMon())

Counting is on time if count is 0 or positive; Counting is on monitor if count < 0

Global variable S is set to the count values for the n channels (set in DefineScaler()) to provide function-
ality similar to spec.

Parameters

• count (float) – time (sec) to count, if omitted COUNT is used

• index (int) – an index for the scaler, if more than one is defined (see DefineScaler()).
The default (0) is used if not specified.

• label (bool) – indicates if counts should be printed along with their labels The default (False)
is to not print counts

Returns count values for the channels (see DefineScaler())

Example:

>>> ct()
[10000000.0, 505219.0, 359.0, 499.0, 389.0, 356.0, 114.0, 53.0]
>>> SetMon(3)
>>> ct(-1000)
[20085739.0, 1011505.0, 719.0, 1000.0, 781.0, 715.0, 226.0, 105.0]

spec.get_counts(wait=False)
Read scaler with optional delay, must follow count_em

reads count values for the channels (see DefineScaler())

Parameters wait (bool) – True causes the routine to wait for the scaler to complete; False (default)
will read the scaler instananeously

Returns a list of channels values

Example:

>>> get_counts()
[1, 2, 3, 4, 5, 6, 7, 8]

spec.mv(mtr, pos)
Move motor without wait

If the move cannot be made, an exception is raised.

11

SPECpy Documentation, Release 1

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.

Example:

>>> mv(samX,0.1)

spec.mvr(mtr, delta)
Move motor relative to current position without wait.

If the move cannot be made, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• delta (float) – a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.

Example:

>>> mvr(samX,0.1)

spec.setCOUNT(count)
Sets the default counting time, see global variable COUNT or ct().

Parameters count (float) – default time (sec) to count.

spec.setDEBUG(state=True)
Sets the debug state on or off, see global variable DEBUG.

Parameters state (bool) – DEBUG is initialized as False, but the default effect of setDEBUG, if no
parameter is specified is to turn the debug state on.

spec.setRETRIES(count=20)
Sets the maximum number of times to retry an EPICS operation (that would nominally be expected to work on
the first try) before generating an exception. See global variable MAX_RETRIES.

Parameters count (float) – maximum number of times to retry an EPICS operation. Defaults to 20.

spec.umv(mtr, pos)
Move motor with wait.

If the move cannot be completed, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.

Example:

12 Chapter 3. Module spec: Function Descriptions

SPECpy Documentation, Release 1

>>> umv(samX,0.1)

spec.umvr(mtr, delta)
Move motor relative to current position with wait.

If the move cannot be completed, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• delta (float) – a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.

Example:

>>> umvr(samX,0.1)

spec.wa(label=False)
Print positions of all motors defined using DefineMtr().

Parameters label (bool) – a flag that specifies if the list should include the motor descriptions. If
omitted or False, the descriptions are not included.

Example:

>>> wa()
samX 1.0
samZ 0.0
>>> wa(True)
samX 1.0 sample X position (mm) + outboard
samZ 0.0 sample Z position (mm) + up

spec.wait_count()
Wait for scaler to finish, must follow count_em

Returns None

Example:

>>> wait_count()

spec.wm(*mtrs)
Read out specified motor(s).

Arguments one or more motor table entries that are defined in DefineMtr().

Returns a single float if a single argument is passed to wm. Returns a list of floats if more than one
argument is passed.

Example:

>>> wm(samX,samZ)
[1.0, 0.0]

13

SPECpy Documentation, Release 1

14 Chapter 3. Module spec: Function Descriptions

CHAPTER

FOUR

MODULE MACROS: SPEC-LIKE
EMULATION

Python functions listed below are designed to implement functionality similar to that in spec.

General purpose routines Description
specdate() Returns the date/time formated like Spec
SetScanFile() Open a file for scan output
ascan() Scan a single motor on a fixed range
dscan() Scan a single motor on a range relative to current position
RefitLastScan() Fit a user-supplied function to a user-supplied function
SendTextEmail() Sends an e-mail message to one or more addresses

Logging

An important set of configuration parameters is that which determine what values are recorded. During data collection,
for example, after each ascan() or dscan() data point. Also, for use in defining macros, the values can also be
saved to a log file using write_logging_parameters().

Logging routines Description
init_logging() Initializes the list of items to be reported
show_logging() Displays a list of the items that will be logged
add_logging_PV() Adds a PV to the list of items to be reported
add_logging_Global() Adds a Global variable to the list of items to be reported
add_logging_PVobj() Adds a PV object to the list of items to be reported
add_logging_motor() Adds a motor reference to the list of items to be reported
add_logging_scaler() Adds a scaler channel to the list of items to be reported
write_logging_header() Writes a header line with labels for each logged item
write_logging_parameters() Write the current value of each logged variable

Example for setting up logging:

>>> import macros
>>> macros.init_logging()
>>> GE_prefix = ’GE2:cam1:’
>>> macros.add_logging_PV(’GE_fname’,GE_prefix+"FileName",as_string=True)
>>> macros.add_logging_PV(’GE_fnum’,GE_prefix+"FileNumber")
>>> macros.add_logging_motor(spec.samX)
>>> macros.add_logging_scaler(9)
>>> macros.add_logging_Global(’var S9’,’spec.S[9]’)
>>> macros.add_logging_PV(’p1Vs’,"1idc:m64.RBV")

Note that the add_logging_scaler and add_logging_Global calls above will record the same value (though with dif-
ferent headings), but the add_logging_scaler is a better choice as the second option could produce the wrong value if

15

SPECpy Documentation, Release 1

use of a second scaler is later added to a script.

Example for use of logging in a script:

>>> mac.write_logging_header(logname)
>>> spec.umv(spec.mts_y,stY)
>>> for iLoop in range(nLoop):
>>> spec.umvr(spec.mts_y,dY)
>>> count_em(Nframe*tframe)
>>> GE_expose(fname, Nframe, tframe)
>>> wait_count()
>>> get_counts()
>>> mac.write_logging_parameters(logname)
>>> mac.beep_dac()

This code step-scans motor mts_y. It writes a header to the log file at the beginning of the operation and then logs
parameters after each measurement. Measurements are done in GE_expose and the default scaler, which are run at the
same time.

Note that it can be useful to put differing sets of logging configurations into files where they can be invoked as needed
using execfile(xxx.py) [where xxx.py is the name of the file to be read]. Do not use import for this task because import
will process the file when it is referenced first, but will not do anything if one attempts to import the file again (to reset
values back after a different setting has been used). One must use reload to force that.

Macros defined specifically for 1-ID

These macros reference 1-ID PV’s or are customized for 1-ID in some other manner.

1-ID specific routines Description
beep_dac() Causes a beep to sound
Cclose() Close 1-ID fast shutter in B hutch
Copen() Open 1-ID fast shutter in B hutch
shutter_sweep() Set 1-ID fast shutter to external control
shutter_manual() Set 1-ID fast shutter to manually control
check_beam_shutterA() Open 1-ID Safety shutter to bring beam into 1-ID-A
check_beam_shutterC() Open 1-ID Safety shutter to bring beam into 1-ID-C
Sopen() Same as check_beam_shutterC(), bring beam into 1-ID-C
MakeMtrDefaults() Create a file with default motor assignments
SaveMotorLimits() Create a file with soft limits for off-line simulations

16 Chapter 4. Module macros: SPEC-like emulation

CHAPTER

FIVE

MODULE MACROS: ALL FUNCTIONS

The functions available in this module are listed below.

macros.Cclose()
Close 1-ID fast shutter in B hutch

macros.Copen()
Open 1-ID fast shutter in B hutch

class macros.FitClass(x, y)
Defines a prototype class for deriving fitting class implementations. A fitting class should define at least two
method: __init__ and Eval.

__init__(x,y) computes a list of very approximate values for the fit parameters, good enough to be used as
the starting values in the fit. The number of terms computed determines the number of parameter values
that will be fit.

Eval(parms,x) provides the function to be fit.

optionally, Format(parms) is used to return a nicely-formatted text string with the fitted parameters.

Eval(parm, x)
Evaluate the fitting function and return a “y” value computed for each value in x. Ideally this expression
computes all values in a single NumPy expression, but looping is allowed. Both parameters should be lists,
tuples or numpy arrays.

Parameters

• parm (list,tuple,etc.) – parameters in the same order as returned by StartParms()

• x (list,tuple,etc.) – values of the independent parameter (scanned variable) for evaluation
of the function.

Format(parm)
This prints the parameters, potentially in a way that explains what they mean. If not overridden, one gets
“Parameter values = <list>”

Parameters parm (list,tuple,etc.) – parameters in the same order as returned by StartParms()

StartParms()
Return the starting parameter values determined in __init__()

class macros.FitGauss(x, y)
Define a function for fitting with a Gaussian.

Parameters are defined as:

17

SPECpy Documentation, Release 1

index value
[0] location of peak
[1] function value at maximum, less parm[3]
[2] width as FWHM
[3] added to all points

Eval(parm, x)
Evaluate the Gaussian

Format(parm)
Prints the parameters

class macros.FitSawtooth(x, y, Symmetric=True)
Define a function for fitting with a symmetric or asymmetric saw-tooth function.

Parameters are defined as:

index value
[0] location of peak
[1] function value at maximum
[2] added to all points
[3] asymmetric: slope on leading side of peak (+ is rising) symmetric: slope on both sides

of peak
[4] asymmetric: slope on trailing side of peak (+ is falling)

Parameters Symmetric (bool) – determines if the SawTooth is symmetric (True) or asymmetric
(False), meaning that the leading side and the trailing side of the peak can have different slopes.

Eval(parm, x)
Evaluate the sawtooth function

macros.MakeMtrDefaults(fil=None, out=None)
Routine in Development: Creates an initialization file from a spreadsheet describing the 1-ID beamline motor
assignments

Parameters

• fil (str) – input file to read. By default opens file ../1ID/1ID_stages.csv relative to the loca-
tion of the current file.

• out (str) – output file to write. By default writes file ../1ID/mtrsetup.py.new Note that if the
default file name is used, the output file must be renamed before use to mtrsetup.py

macros.RefitLastScan(FitClass, **kwargs)
Fit and plot an arbitrary equation to data from the last ascan

Parameters FitClass (class) – a class that defines a minumum of two methods, one to define a
fitting function and the other to determine rough starting values for the fitting function. See
FitGauss or FitSawtooth for examples of Fitting classes.

Optional: additional keyword parameters will be passed for the creation of a FitClass object.

Returns an optimized list of parameters or None if the fit fails

Example:

>>> macros.RefitLastScan(macros.FitSawtooth)
Parameter values =1.45, 28.5, 1.5, 2.1053
array([1.44999999, 28.50005241, 1.4999749 , 2.10525894])

or

18 Chapter 5. Module macros: All Functions

SPECpy Documentation, Release 1

>>> macros.RefitLastScan(macros.FitSawtooth, Symmetric=False)
Parameter values =1.45, 28.5, 1.5, 2.1053, 2.1053
array([1.44999999, 28.5000524 , 1.49997491, 2.10525896, 2.10525891])

macros.SaveMotorLimits(out=None)
Routine in Development: Creates an initialization file for simulation use with the limits for every motor PV that
is found in the current 1-ID beamline motor assignments. import mtrsetup.py or equivalent first. Scans each PV
from 1 to the max number defined.

Parameters out (str) – output file to write, writes file motorlimits.dat.new in the same directory as
this file by default. Note that if the default file name is used, the output file must be renamed
before use to motorlimits.dat

macros.SendTextEmail(recipientlist, msgtext, subject=’specpy auto msg’, recipientname=None,
senderemail=‘1ID@aps.anl.gov’)

Send a short text string as an e-mail message. Uses the APS outgoing email server (apsmail.aps.anl.gov) to send
the message via SMTP.

Parameters

• recipientlist (str) – A string containing a single e-mail address or a list or tuple (etc.) con-
taining a list of strings with e-mail addresses.

• msgtext (str) – a string containing the contents of the message to be sent.

• subject (str) – a subject to be included in the e-mail message; defaults to “specpy auto msg”.

• recipientname (str) – a string to be used for the recipient(s) of the message. If not specified,
no “To:” header shows up in the e-mail. This should be an e-mail address or @aps.anl.gov
is appended.

• senderemail (str) – a string with the e-mail address identified as the sender of the e-mail;
defaults to “1ID@aps.anl.gov”. This should be an e-mail address or @aps.anl.gov is ap-
pended.

Examples:

>>> msg = ’This is a very short e-mail’
>>> macros.SendTextEmail([’toby@sigmaxi.net’,’brian.h.toby@gmail.com’],msg, subject=’test’)

or with a single address:

>>> msg = """Dear Brian,
... How about a longer message?
... Thanks, Brian
... """
>>> to = "toby@anl.gov"
>>> macros.SendTextEmail(to,msg,recipientname=’spamee@anl.gov’,senderemail=’spammer@anl.gov’)

A good way to use this routine is in a try/except block:

>>> userlist = [’user@univ.edu’,’contact@anl.gov’]
>>> try:
>>> macros.write_logging_header(logname)
>>> spec.umv(spec.mts_y,stY)
>>> for iLoop in range(nLoop):
>>> spec.umv(spec.mts_x2,stX)
>>> for xLoop in range(nX):
>>> GE_expose(fname, Nframe, tframe)
>>> macros.write_logging_parameters(logname)

19

mailto:1ID@aps.anl.gov

SPECpy Documentation, Release 1

>>> spec.umvr(spec.mts_x2,dX)
>>> spec.umvr(spec.mts_y,dY)
>>> macros.beep_dac()
>>> except Exception:
>>> import traceback
>>> msg = "An error occurred at " + macros.specdate()
>>> msg += " in file " + __file__ + "\n\n"
>>> msg += str(traceback.format_exc())
>>> macros.SendTextEmail(userlist, msg, ’Beamline Abort’)

macros.SetScanFile(outfile=None)
Set a file for output from ascan, etc. The output is intended to closely mimic what spec produces in ascan and
dscan.

Parameters outfile (str) – the file name to be opened. If not specified, output is sent to the terminal.
If the file is new (or is the not specified) a header listing all motors, etc. is printed

macros.Sopen()
If not already open, open 1-ID-C Safety shutter to bring beam into 1-ID-C. Keep trying in an infinite loop until
the shutter opens.

macros.add_logging_Global(txt, var)
Define a global variable to be recorded when write_logging_parameters() is called

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• var (str) – defines a Python variable that will be logged each time
write_logging_parameters() is called. Note that this is read inside the
macros module so the variable must be defined inside that module or must be prefixed by a
reference to a module referenced in that module, e.g. spec.S[0]

macros.add_logging_PV(txt, PV, as_string=False)
Define a PV to be recorded when write_logging_parameters() is called.

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• PV (str) – defines an EPICS Process Variable that will be read and logged each time
write_logging_parameters() is called.

• as_string (bool) – if True, the PV will be translated to a string. When False (default) the
native data type will be used. Use of True is of greatest for waveform records that are used
to store character strings as a series of integers.

macros.add_logging_PVobj(txt, PVobj, as_string=False)
Define a PVobj to be recorded when write_logging_parameters() is called

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• PV (epics.PV) – defines a PyEpics PV object that is connected to an EPICS Process
Variable. The PV method .get() will be used to read that PV to log it each time
write_logging_parameters() is called.

20 Chapter 5. Module macros: All Functions

SPECpy Documentation, Release 1

• as_string (bool) – if True, the PV value will be translated to a string. When False (default)
the native data type will be used. Use of True is of greatest for waveform records that are
used to store character strings as a series of integers.

macros.add_logging_motor(mtr)
Define a motor object to be recorded when write_logging_parameters() is called. Note that the head-
ing text string is defined as the motor’s symbol (see spec.DefineMtr()).

Parameters mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or de-
fined in the motor symbol. The position of the motor will be read and logged each time
write_logging_parameters() is called.

macros.add_logging_scaler(channel, index=0)
Define a scaler channel to be recorded when write_logging_parameters() is called. Note
that the heading text string is defined as the scaler’s label (which is read from the scaler when
spec.DefineScaler() is run).

Parameters

• channel (str) – a channel number for a scaler, which can be any value between 0 and
one less than the number of channels. The last-read value of that scaler logged each time
write_logging_parameters() is called.

• index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

macros.ascan(mtr, start, finish, npts, count, index=0, settle=0.0, _func=’ascan’)
Scan one motor and record parameters set with logging to the scanfile (see func:SetScanFile).

Parameters

• mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or defined in
the motor symbol.

• start (float) – starting position for scan

• finish (float) – ending position for scan

• npts (int) – number of points for scan

• count (float) – count time. Counting is on time (sec) if count is 0 or positive; Counting is
on monitor if count < 0

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

• settle (float) – a time to wait (sec) after the motor has been moved before counting is starting.
Default is 0.0 which means no delay

Example:

>>> spec.SetDet(2)
>>> macros.ascan(spec.samX,1,2,21,1,settle=.1)

It is recommended that if ascan will be run in command line, where python commands are typed into a
console window, that ipython be used in pylab mode (ipython --pylab).

macros.beep_dac(beeptime=1.0)
Set the 1-ID beeper on for a fixed period, which defaults to 1 second uses PV object beeper (defined as
1id:DAC1_8.VAL) makes sure that the beeper is actually turned on and off throws exception if beeper fails

Parameters beeptime (float) – time to sound the beeper (sec), defaults to 1.0

21

SPECpy Documentation, Release 1

macros.check_beam_shutterA()
If not already open, open 1-ID-A Safety shutter to bring beam into 1-ID-A. Keep trying in an infinite loop until
the shutter opens.

macros.check_beam_shutterC()
If not already open, open 1-ID-C Safety shutter to bring beam into 1-ID-C. Keep trying in an infinite loop until
the shutter opens.

macros.dscan(mtr, start, finish, npts, count, index=0, settle=0.0)
Relative scan of motor, see func:ascan,

Parameters

• mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or defined in
the motor symbol.

• start (float) – starting position for scan, relative to current motor position

• finish (float) – ending position for scan, relative to current motor position

• npts (int) – number of points for scan

• count (float) – count time. Counting is on time (sec) if count is 0 or positive; Counting is
on monitor if count < 0

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

• settle (float) – a time to wait (sec) after the motor has been moved before counting is starting.
Default is 0.0 which means no delay

Example:

>>> spec.SetDet(2)
>>> macros.dscan(spec.samX,-1,1,21,1,settle=.1)

It is recommended that if dscan will be run in command line, where python commands are typed into a
console window, that ipython be used in pylab mode (ipython --pylab).

macros.init_logging()
Initialize the list of data items to be logged

macros.show_logging()
Show the user the current logged items

macros.shutter_manual()
Set 1-ID fast shutter so that it will not be controlled by the GE TTL signal and can be manually opened and
closed with Copen() and Cclose()

macros.shutter_sweep()
Set 1-ID fast shutter so that it will be controlled by an external electronic control (usually the GE TTL signal)

macros.specdate()
format current date/time as produced in Spec

Returns the current date/time as a string, formatted like “Thu Oct 04 18:24:14 2012”

Example:

>>> macros.specdate()
’Thu Oct 11 16:16:39 2012’

22 Chapter 5. Module macros: All Functions

SPECpy Documentation, Release 1

macros.write_logging_header(filename=’‘)
Write a header for parameters recorded when write_logging_parameters() is called.

Parameters filename (str) – a filename to be be used for output. If not specified, the output is sent
to the terminal window.

macros.write_logging_parameters(filename=’‘)
Record the current value of all items tagged to be recorded in add_logging_PV(),
add_logging_Global(), add_logging_PVobj(), add_logging_motor() or
add_logging_scaler().

Parameters filename (str) – a filename to be be used for output. If not specified, the output is sent
to the terminal window.

23

SPECpy Documentation, Release 1

24 Chapter 5. Module macros: All Functions

INDEX

A
add_logging_Global() (in module macros), 20
add_logging_motor() (in module macros), 21
add_logging_PV() (in module macros), 20
add_logging_PVobj() (in module macros), 20
add_logging_scaler() (in module macros), 21
ascan() (in module macros), 21

B
beep_dac() (in module macros), 21

C
Cclose() (in module macros), 17
check_beam_shutterA() (in module macros), 21
check_beam_shutterC() (in module macros), 22
Copen() (in module macros), 17
COUNT, 5
count_em() (in module spec), 10
ct() (in module spec), 11

D
DEBUG, 5
DefineMtr() (in module spec), 7
DefineScaler() (in module spec), 8
dscan() (in module macros), 22

E
EnableEPICS() (in module spec), 8
Eval() (macros.FitClass method), 17
Eval() (macros.FitGauss method), 18
Eval() (macros.FitSawtooth method), 18
ExplainMtr() (in module spec), 8

F
FitClass (class in macros), 17
FitGauss (class in macros), 17
FitSawtooth (class in macros), 18
Format() (macros.FitClass method), 17
Format() (macros.FitGauss method), 18

G
get_counts() (in module spec), 11
GetDet() (in module spec), 8
GetMon() (in module spec), 9
GetMtrInfo() (in module spec), 9
GetScalerInfo() (in module spec), 9
GetScalerLabels() (in module spec), 9
GetScalerLastCount() (in module spec), 9
GetScalerLastTime() (in module spec), 9

I
init_logging() (in module macros), 22

L
ListMtrs() (in module spec), 9

M
MakeMtrDefaults() (in module macros), 18
MAX_RETRIES, 5
mv() (in module spec), 11
mvr() (in module spec), 12

P
PositionMtr() (in module spec), 9

R
ReadMtr() (in module spec), 10
RefitLastScan() (in module macros), 18

S
S, 5
SaveMotorLimits() (in module macros), 19
SendTextEmail() (in module macros), 19
setCOUNT() (in module spec), 12
setDEBUG() (in module spec), 12
SetDet() (in module spec), 10
SetMon() (in module spec), 10
setRETRIES() (in module spec), 12
SetScanFile() (in module macros), 20
show_logging() (in module macros), 22
ShowEnabled() (in module spec), 10

25

SPECpy Documentation, Release 1

shutter_manual() (in module macros), 22
shutter_sweep() (in module macros), 22
Sopen() (in module macros), 20
specdate() (in module macros), 22
StartParms() (macros.FitClass method), 17
Sym2MtrVal() (in module spec), 10

U
umv() (in module spec), 12
umvr() (in module spec), 13

W
wa() (in module spec), 13
wait_count() (in module spec), 13
wm() (in module spec), 13
write_logging_header() (in module macros), 22
write_logging_parameters() (in module macros), 23

26 Index

	Module spec: SPEC-like emulation
	Module spec: Global variables
	Module spec: Function Descriptions
	Module macros: SPEC-like emulation
	Module macros: All Functions
	Index

